RAS Earth ScienceГеология рудных месторождений Geology of Ore Deposits

  • ISSN (Print) 0016-7770
  • ISSN (Online) 3034-5073

Periodicity and kinematics of the formation of porphyry copper deposits in the pacific belt over the past 125 million years

PII
285988-633531-1
DOI
10.7868/23531-1
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 67 / Issue number 1
Pages
85-116
Abstract
Statistical analysis of the time series of Cu-porphyry deposits of the Pacific belt and their total ore volume formed in the last 125 million years showed the presence of (quasi)a cyclic component with a period of 26–28 million years, whose share in the total amplitude is 74%. An inverse correlation has been established between the global spreading rate, on the one hand, and the number of Cu-porphyry deposits in the Pacific belt and their productivity, on the other, for the last 125 million years. The relative minima of the spreading rate precede the relative maxima of the number and total volume of Cu-porphyry deposits in the Pacific belt by 5–10 million years. During the formation of large and giant Cu-porphyry deposits in the Pacific belt, the rate of change in the angle of convergence in the horizontal plane in the zone of interaction between two tectonic plates increases. At the same time, the absolute rate of convergence can both decrease and increase. According to geological, structural and kinematic data, magmatism, as a result of which 8 large and giant Cu-porphyry deposits were formed, was accompanied by through-crust disjunctive disturbances associated either with a change in the frontal convergence of the "oblique", or a transition to the mode of a transform continental margin, or with a reversible change in the direction of subduction associated with the island arc-continent collision The island arc is an oceanic plateau.
Keywords
медно-порфировые месторождения Тихоокеанский пояс периодичность и кинематика
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Архипов М.В., Войнова И.П., Кудымов А.В., Песков А.Ю., Ото Ш., Нагата М., Голозубов В.В., Диденко А.Н. Сравнительный анализ апт-альбских пород Кемского и Киселевско-Маноминского террейнов: геохимия, геохронология и палеомагнетизм // Тихоокеанская геология. 2019. Т. 38. № 3. С. 58–83.
  2. 2. Буханова Д.С. Минералого-геохимические особенности Малмыжского золотомедно-порфирового месторождения, Хабаровский край: автореф. дисс. канд. геол.-мин. наук: 25.00.11. Петропавловск-Камчатский, 2020. 25 с.
  3. 3. Викентьев И.В., Бортников Н.С. Предисловие к специальному выпуску журнала “Геология рудных месторождений”, посвященному порфировым и родственным месторождениям Северной Евразии // Геология рудных месторождений. 2023. Т. 65. № 7. С. 591–595. DOI: 10.31857/S0016777023070067
  4. 4. Викентьев И.В., Бортников Н.С. Предисловие к специальному выпуску журнала “Геология рудных месторождений”, посвященному порфировым и родственным месторождениям Северной Евразии // Геология рудных месторождений. 2024. Т. 66. № 1. С. 3–6.
  5. 5. Волков А.В., Сидоров А.А., Старостин В.И. Металлогения вулканогенных поясов и зон активизации. М.: МАКС Пресс, 2014. 356 с.
  6. 6. Геодинамика, магматизм и металлогения Востока России: в 2 кн. / Под ред. А.И. Ханчука. Владивосток: Дальнаука. 2006. Кн. 1., 572 с., Кн. 2, 409 с.
  7. 7. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Серия Дальневосточная. Лист М-53 – Хабаровск. Объяснительная записка. С-Пб.: Картфабрика ВСЕГЕИ, 2009. 376 с.
  8. 8. Диденко, А.Н., Архипов, М.В., Талтыкин, Ю.В., Крутикова, В.О., Коновалова Е.А. Петро-палеомагнитная характеристика габбродиоригов нижнеамурского комплекса Журавлевско-Амурского террейна (Сихотэ-Алиньский орогенный пояс) // Тихоокеанская геология. 2023. Т. 42. № 5. С. 57–75. https://doi.org/10.30911/0207-4028-2023-42-5-57-75
  9. 9. Добрецов Н.Л. Рудообразование и глобальные геологические процессы: эволюция и проблемы периодичности / Смирновский сборник-96: основные проблемы рудообразования и металлогении. Москва, 1996. С. 38–60.
  10. 10. Дэвис Дж.С. Статистический анализ данных в геологии. Пер. с англ. В 2 кн./Пер. В.А. Голубевой. Под ред. Д.А. Родионова. М.: Недра, 1990. Кн. 1 (319 с.). Кн. 2 (427 с.).
  11. 11. Каламбет Ю.А., Козьмин Ю.П., Самохин А.C. Фильтрация шумов. Сравнительный анализ методов // Аналитика. 2017. Т. 36. № 5. С. 88–101. https://doi.org/10.22184/2227-572X.2017.36.5.88.101
  12. 12. Кокс А., Харт Р. Тектоника плит. М.: Мир, 1989. 427 с.
  13. 13. Любушин А.А. Анализ данных систем геофизического и экологического мониторинга. М.: Наука, 2007. 228 с.
  14. 14. Рундквист Д.В., Ткачев А.В., Черкасов С.В., Гатинский Ю.Г., Вишневская Н.А. База данных и металлогеническая карта крупных и суперкрупных месторождений мира: принципы составления и предварительный анализ результатов / Крупные и суперкрупные месторождения: закономерности размещения и условия образования. Под ред. Д.В. Рундквиста. М.: ИГЭМ РАН, 2004. С. 391–422.
  15. 15. Ханчук А.И., Иванов В.В., Игнатьев Е.К., Коваленко С.В., Семенова Д.В. Альб-сеноманский магматизм и медный рудогенез Сихотэ-Алиня // Докл. РАН. 2019. Т. 488. № 3. С. 69–73.
  16. 16. Шарапов В.Н., Лапухов А.С., Смолянинова Л.Г. Временные характеристики развития вулканоплутонических рудно-магматических систем окраин Тихого океана // Геология и геофизика. 2013. Т. 54. № 11. С. 1731–1753.
  17. 17. Якубчук А.С. Порфировые месторождения Северной Евразии: практические аспекты тектонического контроля, структурных особенностей и оценки эрозионного среза от Урала до Тихого океана // Геология рудных месторождений. 2024. Т. 66. № 1. С. 7–26.
  18. 18. Amilibia A., Sabat F., McClay K.R., Munoz J.A., Roca E., Chong G. The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko // J. Struct. Geol. 2008. V. 30(12). P. 1520–1539. https://doi.org/10.1016/j.jsg.2008.08.005
  19. 19. Argus D.F., Gordon R.G., DeMets C. Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame // Geochem. Geophys. Geosyst. 2011. V. 12. Q11001. https://doi.org/10.1029/2011GC003751
  20. 20. Boulila S., Haq B.U., Hara N., Müller R.D., Galbrun B., Charbonnier G. Potential encoding of coupling between Milankovitch forcing and Earth’s interior processes in the Phanerozoic eustatic sea-level record // Earth-Science Reviews. 2021. V. 220. P. 103727(1–50). https://doi.org/10.1016/j.earscirev.2021.103727
  21. 21. Cao X., Zahirovic S., Li S., Suo Y., Wang P., Liu J., Müller R.D. A deforming plate tectonic model of the South China Block since the Jurassic // Gondwana Research. 2022. V. 102. P. 3–16. https://doi.org/10.1016/j.gr.2020.11.010
  22. 22. Cloos M., Sapiie B., van Ufford A.Q., Weiland R.J., Warren P.Q., McMahon T.P. Collisional delamination in New Guinea: The geotectonics of subducting slab breakoff // Geological Society of America. Special Paper 400. 2005. 51 p. https://doi.org/10.1130/2005.2400
  23. 23. Coe R.S., Globerman B.R., Plumley P.W., Thrupp G.A. Paleomagnetic results from Alaska and their tectonic implications / In: Tectonostratigraphic Terranes of the CircumPacific Region, Ed. D.G. Howell. Am. Assoc. Petrol. Geol., Houston Circum-Pacific Council for Energy and Mineral Resources, Series 1. 1985. P. 85–108.
  24. 24. Coleman P.J., Hackman B.D. Solomon Islands / In Mesozoic-Cenozoic Orogenic Belts: Data for Orogenic Studies. Ed. by A.M. Spencer. Scottish Academic Press, Edinburgh, 1974. P. 453–461. https://doi.org/10.1144/GSL.SP.2005.004.01.28
  25. 25. Cooke D.R., Hollings P., Walshe J.L. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls // Economic Geology. 2005. V. 100. № 5. P. 801–818. https://doi.org/10.2113/gsecongeo.100.5.801.
  26. 26. Corbett G., Leach T. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization // Economic Geology. Society of Economic Geologists. 1998. Special Publication 6. 238 p. https://doi.org/10.5382/SP.06Corpus ID: 112266656
  27. 27. Deng J., Yang X., Zhang Z-F., Santosh M. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotope // Lithos. 2015. V. 230. P. 166–179. https://doi.org/10.1016/j.lithos.2015.05.020
  28. 28. Diaz-Rodriguez J., Muller R.D., Chandrall R. Predicting the emplacement of Cordilleran porphyry copper systems using spatio-temporal machine learning model // Ore Geol. Rev. 2021. V. 137. P. 104300. https://doi.org/! 0.1016/j.oregeorev.2021.104300
  29. 29. Eastoe C.J. The formation of the Panguna porphyry copper deposit, Bbougainville, Papua New Guinea. Bachelor of Science (Honours). University of Tasmania, Hobart. 1979. 84 p.
  30. 30. English J.M., Jonston S.T. The Laramide Orogeny: What Were the Driving Forces? // International Geology Review. 2004. V. 46. P. 833–838.
  31. 31. Geological map, Bougainville and Buka Islands, Territory of Papua and New Guinea / compiled by Y. Miezitis. 1967. https://nla.gov.au/nla.obj-1532817321/view
  32. 32. GPlates software. 2022. https://www.gplates.org/
  33. 33. Hackman, B.D. 1980. The Geology of Guadalcanal, Solomon Islands. Overseas Memoir, Institute of Geological Sciences. London: 1980. № 6. 115 p.
  34. 34. Haeussler P.J., Saltus R.W. Twenty-six kilometers of offset since late Eocene time on the Lake Clark fault / In Haeussler P.J., Galloway J.P., eds. Studies by the U.S. Geological Survey in Alaska, 2004: U.S. Geological Survey Professional Paper 1709-A. 2005. P. 1–4.
  35. 35. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics software package for education and data analysis // Palaeontologia Electronica. 2001. V. 4. Is. 1. P. 1–9. https://palaeo-electronica.org/2001_1/past/past.pdf
  36. 36. Humphreys E., Hessler E., Dueker K., Farmer G.L., Erslev E., Atwater, T. How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States // International Geology Review. 2003. V. 45(7). P. 575–595. https://doi.org/10.2747/0020-6814.45.7.575
  37. 37. Kay, S.M., Mpodozis C., Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust, GSA Today, 2001, 4(3), 4–9. https://doi.org/10.1130/1052-5173 (2001)0112.0.co;2
  38. 38. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, russian south east: terranes and the formation of continental lithosphere based on geological and isotopic data // Journal of Asian Earth Sciences. 2016. V. 120. C. 117–138.
  39. 39. Lang J.R., Gregory M.J. Chapter 8. Magmatic-Hydrothermal-Structural Evolution of the Giant Pebble Porphyry Cu-Au-Mo Deposit with Implications for Exploration in Southwest Alaska / Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Jeffrey W. Hedenquist, Michael Harris, Francisco Camus 2012 Society of Economic Geologists, Inc. 2012. P. 167–185.
  40. 40. Lang J.R., Gregory M.J., Rebagliati C.M., Payne J.G., Oliver J.L., Roberts K. Geology and magmatic-hydrothermal evolution of the giant Pebble porphyry copper-gold-molybdenum deposit, southwest Alaska // Economic geology. 2013. V. 108. P. 437–462.
  41. 41. Langton, J.M., Williams, S.A., Structural, petrological and mineralogical controls for the Dos Pobres orebody: Lone Star mining district, Graham County, Arizona (USA). Advances in geology of the porphyry copper deposits: southwestern North America, 1982, 335–352.
  42. 42. Li M., Hinnov L.A., Kump L.R. Acycle: Time-series analysis software for paleoclimate projects and education // Computers & Geosciences. 2019. V. 127. P. 12–22. https://doi.org/10.1016/j.cageo.2019.02.011
  43. 43. Liu, L., Gurnis, M., Seton, M. et al. The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience. 2010. V. 3. P. 353–357. https://doi.org/10.1038/ngeo829
  44. 44. Lomb N.R. Least-squares frequency analysis of unequally spaced data // Astrophys. & Space Sci. 1976. V. 39. P. 447–462.
  45. 45. Maksaev V., Munizaga F., McWilliams M., Fanning M., Marther R., Ruiz J., Zentilli M. Chronology for El Teniente, Chilean Andes, from U-Pb, 40Ar/39Ar, Re-Os, and fission track dating: implications for the formation of a supergiant porphyry Cu-Mo deposit. In: Sillitoe R.H., Perello J. & Vidal C.E. (eds) Andean Metallogeny: New Discoveries, Concepts and Updates. Society of Economic Geologists, 2004, Special Publications 11, 15–54.
  46. 46. Mars J.C., Robinson G.R., Hammarstrom J.M., Zürcher L., Whitney H., Solano F., Gettings M., Ludington S. Porphyry Copper Potential of the United States Southern Basin and Range Using ASTER Data Integrated with Geochemical and Geologic Datasets to Assess Potential Near-Surface Deposits in Well-Explored Permissive Tracts // Economic Geology. 2019. V. 114 (6). P. 1095–1121. https://doi.org/10.5382/econgeo.4675
  47. 47. Mihalasky M.J., Ludington S., Alexeiev D.V., Frost T.P., Light T.D., Briggs D.A., Hammarstrom J.M., Wallis J.C., with contributions from Bookstrom A.A. and Panteleyev A. Porphyry copper assessment of Northeast Asia-Far East Russia and Northeasternmost China. U.S. Geological Survey, Scientific Investigations Report 2010-5090-W. 2015. 104 p., and spatial data. http://dx.doi.org/10.3133/sir20105090W
  48. 48. Mineral Resources Online Spatial Data. 2023. https://mrdata.usgs.gov/#mineral-resources
  49. 49. Mpodozis C., Cornejo P. Chapter 14. Cenozoic Tectonics and Porphyry Copper Systems of the Chilean Andes / Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Jeffrey W. Hedenquist, Michael Harris, Francisco Camus 2012 Society of Economic Geologists, Inc. 2012. P. 329–360.
  50. 50. Müller R.D., Zahirovic S., Williams S.E., Cannon J., Seton M., Bower D.J., Tetley M.G., Heine C., Le Breton E., Liu S., Russell S.H.J., Yang T., Leonard J., Gurnis M. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic // Tectonics. 2019. V. 38(6) P. 1884–1907. https://doi.org/10.1029/2018TC005462
  51. 51. Nagel T.J., Ryan W.B.F., Malinvemo A., Buck W.R. Pacific trench motions controlled by the asymmetric plate configuration // Tectonics. 2008. V. 27. TC3005. https://doi.org/10.1029/2007TC002183, 2008
  52. 52. Olson, N., Dilles, J.H., Kent, A.J.R., Lang, J.R., Geochemistry of the Cretaceous Kaskanak batholith and genesis of the pebble porphyry Cu–Au–Mo deposit, southwest Alaska. American Mineralogist, 2017, 102, 1597–1621, https://doi.org/10.2138/am-2017-6053
  53. 53. Ossandon G., Freraut R., Gustafson L.B., Lindsay D.D., Zentilli, M. Geology of the Chuquicamata mine: A progress report // Economic Geology. 2001. V. 96. P. 249–270.
  54. 54. Page R.W., McDougall I. Geochronology of the Panguna porphyry copper deposit, Bougainville Island, New Guinea // Economic Geology. 1972. V. 67(8). P. 1065–1074.
  55. 55. Paterson J.T., Cloos M. Grasberg porphyry Cu-Au deposit, Papua, Indonesia: 1. Magmatic history / In Super Porphyry Copper & Gold Deposit: A Global Perspective. Ed. T.M. Porter. Adelaide: PGC Publishing, 2005. V. 2. P. 313–329.
  56. 56. Petrov O.V., Khanchuk A.I., Ivanov V.V., Shatov V.V., R. Seltmann C., Dolgopolova A.V., Alenicheva A.A., Molchanov A.V., Terekhov A.V., Leontev V.I., Belyatsky B.V., Rodionov N.V., Sergeev S.A. Porphyry indicator zircons (PIZ) and geochronology of magmatic rocks from the Malmyzh and Pony Cu-Au porphyry ore fields (Russian Far East) // Ore Geology Reviews. 2021. V. 139. Article 104491. https://doi.org/10.1016/j.oregeorev.2021.104491
  57. 57. Pisarevsky, S.A., Li, Z.X., Tetley, M.G., Liu, Y., Beardmore, J.P., An updated internet-based Global Paleomagnetic Database, Earth-Science Reviews, Volume 235, 2022, 104258, https://doi.org/10.1016/j.earscirev.2022.104258.
  58. 58. Prokoph A., Fowler A.D., Patterson R.T. Evidence for periodicity and nonlinearity in a highresolution fossil record of long-term evolution // Geology. 2000. V. 28. P. 867–870.
  59. 59. Ramos V.A., Folguera A. Andean flat-slab subduction through time / Ancient Orogens and Modern Analogues, eds.: Murphy J.B., Keppie J.D., Hynes A.J. Geological Society, London. 2009. Special Publications. V. 327. P. 31–54. https://doi.org/10.1144/SP327.3 0305-8719/09
  60. 60. Ramos V.A., Folguera A., Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting, J.Volcanology&Geothermal Res. 2011, 201, 53–64. https://doi.org/10.1016/j.jvolgeores.2010.09.008
  61. 61. Rampino M.R., Caldeira K., Zhu Y. A 27.5-My underlying periodicity detected in extinction episodes of non-marine tetrapods // Historical Biology. 2021a. V. 33(11). P. 3084–3090. https://doi.org/10.1080/08912963.2020.1849178
  62. 62. Rampino M.R., Caldeira K., Zhu Y. A pulse of the Earth: A 27.5-Myr underlying cycle in coordinated geological events over the last 260 Myr // Geoscience Frontiers. 2021b. Volume 12, Issue 6, 101245. https://doi.org/10.1016/j.gsf.2021.101245.
  63. 63. Raup D.M., Sepkoski J.J. Periodicity of extinctions in the geologic past // Proceedings of the National Academy of Sciences. 1984. V. 81. No. 3. P. 801–805. https://doi.org/10.1073/pnas.81.3.801. PMC 344925. PMID 6583680.
  64. 64. Richards J.P. Porphyry copper deposit formation in arcs: What are the odds? // Geosphere. 2021. V. 18(1). P. 130–155. https://doi.org/10.1130 /GES02086.1
  65. 65. Richards J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere // Geology. 2009. V. 37. P. 247–250.
  66. 66. Rodrigo J.D., Gabo-Ratio J.A.S., Queaño K.L., Fernando A.G.S., de Silva L.P., Yonezu K., Zhang Y. Geochemistry of the Late Cretaceous Pandan Formation in Cebu Island, Central Philippines: Sediment contributions from the Australian plate margin during the Mesozoic // Depositional Rec. 2020. 6. P. 309–330. https://doi.org/10.1002/dep2.103
  67. 67. Russin Hypogene alteration and mineralization in the Dos Pobres porphyry Cu (-Au-Mo) deposite, Safford district, Arizona: a gold -and magnetite-rich variant of Arizona porphyry copper systems. A thesis submitted to the faculty of the department of geosciences, 2008, 120 p. www.geo.arizona.edu/Antevs/Theses/RussinMS08.pdf
  68. 68. Sapiie В, Cloos M. Strike-slip faulting in the core of the Central Range of west New Guinea: Ertsberg Mining District, Indonesia // Geological Society of America Bulletin. 2004. V. 116. P. 277–293.
  69. 69. Sapiie В. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia // Indonesian Journal on Geoscience. 2016. V. 3 (1). P. 1–16. https://doi.org/10.17014/ijog.3.1.1-16
  70. 70. Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures // Anal. Chem. 1964. V. 36. P. 1627–1639. https://doi.org/10.1021/ac60214a047
  71. 71. Scargle J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data // Astrophys. J. 1982. Vol. 263. P. 835–853.
  72. 72. Sillitoe R.H. Chapter 1. Copper Provinces / Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Jeffrey W. Hedenquist, Michael Harris, Francisco Camus 2012 Society of Economic Geologists, Inc. 2012. P. 1–18.
  73. 73. Sillitoe R.H. Porphyry copper systems // Economic Geology. 2010. V. 105. P. 3–41. https://doi.org/10.2113/gsecongeo.105.1.3.
  74. 74. Singer D.A., Berger V.I., Moring B.C. Porphyry Copper Deposits of the World: Database And Grade and Tonnage Models, 2008. Open-File Report 2008-1155. U.S. Geological Survey, Menlo Park. 2008. 46 p. https://www.researchgate.net/publication/303172164_Porphyry_ copper_deposits_of_the_world_database_map_grade_and_tonnage_models/link/5f530c17299bf13a31a0946e/
  75. 75. Stern, C.R., Skewes, M.A., Arevalo A., Magmatic Evolution of the Giant El Teniente Cu–Mo Deposit, Central Chile // J. Petrology. 2011. V. 52. P. 1591–1617.
  76. 76. Taylor B. A Geophysical Survey of the WoodlarkSolomons Region. Circum-Pacific Council for Energy and Mineral Resources, Earth Sci. 1987. Ser. 7. P. 25–48.
  77. 77. Zhou D., Li CF., Zlotnik S., Wang J. Correlations between oceanic crustal thickness, melt volume, and spreading rate from global gravity observation // Mar Geophys Res. 2020. V. 41. P. 14. https://doi.org/10.1007/s11001-020-09413-x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library