- PII
- S0016777025010026-1
- DOI
- 10.31857/S0016777025010026
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 67 / Issue number 1
- Pages
- 29-49
- Abstract
- The scheelite (CaWO4) is main ore mineral from the Vostok-2 reduced skarn type deposit, which located in Primorie region (Russia) and connected with the Sikhote-Alin central fault. By mineral composition and geochemical characteristics ore rocks were divided into two most common types: skarns and quartz-veins. This study presented results of complex (mineragraphy, cathodoluminescence (CL), electron-probe microanalysis (EPMA), laser-ablation inductively-connected plasma mass-spectrometry (LA-ICP-MS)) researching of scheelite. These parameters for scheelite like inner structure, illumination character in CL and UV, contents of micro- and macroimpurities, Eu/Eu* value, REE spectral shape are crucial indicators of the conditions of mineralization. These signs allowed to identify different mechanism of REE entering in scheelite from skarns and quartz-veins (3Ca2+ ↔ 2REE3+ + □ and Ca2+ + W6+ ↔ REE3+ + Nb5+ where □ is vacancy in the Ca site). By distribution specific of REE three types of scheelite were identified and their temporal relationships were established. Because scheelite inherits REE characteristics from mineral-forming environment some conclusions were shown: evolution of the ore-forming fluid, pulsation nature of the substance’s intake and its single source, and reductive conditions of mineralization were proved for the deposit as a whole.
- Keywords
- Восток-2 Приморский край скарны шеелит типоморфизм РЗЭ минерал-индикатор геохимия
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Апельцин Ф.Р., Кудрин В.С., Кудрина М.А. и др. Некоторые аспекты генезиса скарново-шеелитовых месторождений Приморья // Металлогения олова и вольфрама Дальнего Востока. Владивосток, 1983. С. 105–118.
- 2. Гвоздев В.И. Рудно-магматические системы скарново-шеелит-сульфидных месторождений Востока России: Автореф. дис. … д-ра геол.-мин. наук. Владивосток: ДВГИ, 2007. 54 с.
- 3. Гладков Н.Г., Ефремова С.В., Коваленко В.И., Коваль П.В., Осипов М.А., Руб А.К., Руб М.Г., Рязанцева М.Д., Шерхан О., Якимов В.М., Ярмолюк В.В. Рудоносность магматических ассоциаций. М.: Наука, 1988. 231 с.
- 4. Коваленкер В.А., Плотинская О.Ю., Киселева Г.Д., Минервина Е.А., Борисовский С.Е., Жиличева О.М., Языкова Ю.И. Шеелит скарново-порфирового Cu-Au-Fe месторождения Быстринское (восточное Забайкалье, Россия): генетические следствия // Геология руд. месторождений. 2019. Т. 61. № 6. С. 67–88. https://doi.org/10.31857/S0016-777061667-88
- 5. Плотинская О.Ю., Бакшеев И.А., Минервина Е.А. Распределение РЗЭ в шеелите золото-порфирового месторождения Юбилейное (ю. Урал) по данным LA-ICP-MS // Геология руд. месторождений. 2018. Т. 60. № 4. С. 401–410. https://doi.org/10.1134/S0016777018040020
- 6. Руб М.Г., Павлов В.А., Гладков Н.Г., Яшухин О.И. Оловоносные и вольфрамоносные гранитоиды некоторых регионов СССР. М.: Наука, 1982. 259 с.
- 7. Соловьев С.Г. Типы распределения редкоземельных элементов в шеелитах скарновых месторождений // Докл. АН. 1999. Т. 365. № 1. С. 104–107.
- 8. Соловьев С.Г. Металлогения фанерозойских скарновых месторождений вольфрама. М.: Научный мир, 2008. 361 с.
- 9. Соловьев С.Г., Кривощеков Н.Н. Скарновое золото-полиметально-вольфрамовое месторождение Восток 2 (центральный Сихотэ-Алинь, Россия) // Геология руд. месторождений. 2011. Т. 53. № 6. С. 543–568.
- 10. Степанов Г.Н. Минералогия, петрография и генезис скарново-шеелит-сульфидных месторождений Дальнего Востока. М.: Наука, 1977. 170 с.
- 11. Ханчук А.И. Палеогеодинамический анализ формирования рудных месторождений Дальнего Востока России // Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. С. 5–34.
- 12. Ханчук А.И., Голозубов В.В., Мартынов Ю.А., Симаненко В.П. Меловые и палеогеновые трансформационные окраины континентов (калифорнийский тип). Дальний Восток России // Тектоника Азии, 1997. С. 240–243.
- 13. Хетчиков Л.Н., Пахомова В.А., Гвоздев В.И., Журавлев Д.З. Возраст оруденения и некоторые особенности генезиса скарново-шеелит-сульфидного месторождения Восток-2 в Центральном Сихотэ-Алине // Руды и металлы, 1999. № 2. С. 30–36.
- 14. Brugger J., Bettiol A., Costa S., Lahaye Y., Bateman R., Lambert D.D., Jamieson D.N. Mapping REE distribution in scheelite using luminescence // Mineral. Mag. 2000. V. 64. № 5. P. 891–903. https://doi.org/10.1180/002646100549724
- 15. Brugger J., Etschmann B., Pownceby M., Liu W., Grundler P., Brewe D. Oxidation state of europium in scheelite: Tracking fluid–rock interaction in gold deposits // Chemical Geology. 2008. V. 257. P. 26–33. https://doi.org/10.1016/j.chemgeo.2008.08.003
- 16. Chen J., Wang R.-C., Zhu J.-C., Lu J.-J., Ma D.-S. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China // Science China Earth Sciences. 2013. V. 56. № 12. P. 2045–2055. https://doi.org/10.1007/s11430-013-4736-9
- 17. Ghaderi M., Palin J.M., Campbell I.H., Sylvester P.J. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia // Econ. Geol. 1999. V. 94. P. 423–437. https://doi.org/10.2113/gsecongeo.94.3.423
- 18. Götze J., Schertl H-P., Neuser R.D., Kempe U., Hanchar J.M. Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals // Mineral. Petrol. 2013. V. 107. P. 373–392. https://doi.org/10.1007/s00710-012-0256-0
- 19. Henderson P. The Book of Rare Earth Element Geochemistry. London.: Elsevier, 1984. 510 p.
- 20. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Cosmochim. Acta. 1999. V. 63. № 3–4. P. 489–508. https://doi.org/10.1016/S0016-7037 (99)00027-7
- 21. Linnen R.L., William-Jones A.E. Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia // Econ. Geol. 1990. V. 85. № 8. P. 1840–1856. https://doi.org/10.2113/gsecongeo.85.8.1840
- 22. Lipin B.R., McKay G.A. Geochemistry and Mineralogy of rare earth elements. Berlin.: De Gruyter. 1989. 348 p. https://doi.org/10.1515/9781501509032
- 23. Liu B., Kong H., Wu Q.-H., Chen S.-F., Li H., Xi X.-S., Wu J.H., Jiang H. Origin and evolution of W mineralization in the Tongshanling Cu–polymetallic ore field, South China: Constraints from scheelite microstructure, geochemistry, and Nd–O isotope evidence // Ore Geol. Rev. 2022. V. 143. № 104764. https://doi.org/10.1016/j.oregeorev.2022.104764
- 24. Liu B., Wu Q.-H., Li H., Evans N.J., Wu J.-H., Cao J.-Y., Jiang J.-B. Fault-fluid evolution in the Xitian W–Sn ore field (South China): Constraints from scheelite texture and composition // Ore Geol. Rev. 2019. V. 114. P. 113–136. https://doi.org/10.1016/j.oregeorev.2019.103140
- 25. MacRae C.M., Wilson N.C., Brugger J. Quantitative cathodoluminescence mapping with application to a Kalgoorlie scheelite // Microsc. Microanal. 2009. № 15. P. 222–230. https://doi.org/10.1017/S1431927609090308
- 26. Poulin R.S., Kontak D.J., McDonald A.M., McСlenaghan M.B. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry // Can. Mineral. 2018. V. 56. № 3. P. 265–302. https://doi.org/10.3749/canmin.1800005
- 27. Poulin R.S., Mcdonald A.M., Kontak D.J., McClenaghan M.B. On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments // Can. Min. 2016. V. 54. № 5. P. 1147–1173. https://doi.org/10.3749/canmin.1500023
- 28. Rempel K.U., Williams-Jones A.E., Migdisov A.A. The partitioning of molybdenum (VI) between aqueous liquid and vapour at temperatures up to 370 C // Geochim. Cosmochim. Acta. 2009. V. 73. № 11. P. 3381–3392. https://doi.org/10.1016/j.gca.2009.03.004
- 29. Shoji T., Sasaki N. Fluorescent color and X-ray powder data of synthesized scheelite-powellite series as guides to determine its composition // Mining Geology. 1978. V. 28. № 156. P. 397–404. https://doi.org/10.11456/shigenchishitsu1951.28.397
- 30. Soloviev S.G., Kryazhev S.G. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia // Mineral. Deposita. 2017. V. 52. P. 903–928. https://doi.org/10.1007/s00126-016-0705-5
- 31. Soloviev S.G., Kryazhev S.G., Dvurechenskaya S.S. Geology, mineralization and fluid inclusion characteristics of the Vostok-2 reduced W-Cu skarn and Au-W-Bi-As stockwork deposit, Sikhote-Alin, Russia // Ore Geol. Rev. 20171. V. 86. P. 338–365. https://doi.org/10.1016/j.oregeorev.2017.02.029
- 32. Soloviev S.G., Kryazhev S.G., Dvurechenskaya S.S. Geology, mineralization, and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (±Cu, Au, Bi) skarn deposit, Sikhote-Alin, Russia // Ore Geol. Rev. 20172. V. 89. P. 15–39. https://doi.org/10.1016/j.oregeorev.2017.06.002
- 33. Song G., Cook N.J., Li G., Qin K., Ciobanu C.L., Yang Y., Xu Y. Scheelite geochemistry in porphyry-skarn W-Mo systems: A case study from the Gaojiabang Deposit, East China // Ore Geol. Rev. 2019. V. 113. № 103084. https://doi.org/10.1016/j.oregeorev.2019.103084
- 34. Song G.X., Qin K.Z., Li G.M., Noreen J.E., Li X.H. Mesozoic Magmatism and Metallogeny in the Chizhou Area, Middle-Lower Yangtze Valley, SE China: Constrained by Petrochemistry, Geochemistry and Geochronology // J. Asian Earth Sci. 2014. V. 91. P. 137–153. https://doi.org/10.1016/j.jseaes.2014.04.025
- 35. Sun K., Chen B. Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China // Am. Min. 2017. V. 10. № 5. P. 1114–1128. https://doi.org/10.2138/am-2017-5654
- 36. Sun K., Chen B., Deng J. Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China: Evidence from scheelite geochemistry // Ore Geol. Rev. 2019. V. 107. P. 14–29. https://doi.org/10.1016/j.oregeorev.2019.02.017
- 37. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications or mantle composition and processes // Geol. Soc. Spe Publ. 1989. V. 42. P. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
- 38. Zeng Z.G., Li C.Y., Liu Y.P., Tu G.Z. REE Geochemistry of scheelite of two genetic types from Nanyangtian, Southeastearn Yunnan // Geol. Geochem. 1998. V. 26. P. 34–38.
- 39. Zhao Z.G., Gao L.M. Discussion about Standardization of Methods to Calculate δEu, δCe. // Reporting of Standardzation. 1998. V. 19. № 5. P. 23–25.