- PII
- S30345073S0016777025030053-1
- DOI
- 10.7868/S3034507325030053
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 67 / Issue number 3
- Pages
- 337-375
- Abstract
- The Sn (-Cu) Tam Dao ore district is located at the southern margin of the South China Block within the Lo Gam structure at northeastern Vietnam. Genetically ore mineralization of the Tam Dao ore district is associated with the homonymous massif of biotite granites of the Pia Bioc complex Middle Triassic age and includes a number of different size tin deposits . The Ngoi Lem deposit (4700 tons of Sn and 300 tons of Cu) is the largest and most studied ones. Despite the widespread distribution of Early-Middle Triassic granitoid magmatism within the Lo Gam structure, tin mineralization was revealed only near the Tam Dao massif and practically does not appear around other massifs of the Phia Bioc complex. Zircon geochemical features from biotite granites of various massifs indicate the similarity of the oxygen fugacity and fractionation degree of the parental melts. The obtained zircon characteristics are fully consistent with realistic genetic models for tin deposits related with reduced intrusions. The partial melting temperature of the metasedimentary substrate is the reasons for the various metal fertility potential of coeval and geochemically similar granitoids. The relatively high zircon crystallization temperatures (~>780-800°C) of tin-bearing biotite granites of the Tam Dao imply that they were produced at a higher temperature by biotite-dehydration melting, which requires additional heat from the mantle. The interaction between ma c and granitic magmas led to the enrichment of acidic melts in copper. The low oxygen fugacity led the dominance of the sul de form of sulfur in melts, which in turn determined its low concentration. The low S/Cu ratio in the granite melt prevented crystallization and fractionation of sul des therefore the residual melts experienced some Cu enrichment. The proposed scenario of granite melt Cu saturation and the absence of its signi cant sul de fractionation explains the contradictory Sn-Cu metallogeny of the Tam Dao ore district. The new obtained features of the Early-Middle Triassic Pia Bioc granites propose key zircon geochemical indicators of tin fertility reduced granitic magma: (1) T~>780-800°C, (2) ΔFMQ
- Keywords
- гранит оловорудное месторождение U-Pb-датирование циркон геохимия индикаторы фертильности Там Дао Северо-Восточный Вьетнам
- Date of publication
- 21.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 63
References
- 1. Довжиков А.Е., Буй Фу Ми, Василевская Е.Д., Жамойда А.И., Иванов Г.В., Изох Э.П., Ле Динь Хыу, Мареичев А.М., Нгуйен Ван Тиен, Нгуйен Тыонг Три, Тран Дык Лыонг, Фам Ван Куанг, Фам Динь Лонг. Геология Северного Вьетнама. Ханой, Вьетнам: Наука и Техника. 1965. 668 с.
- 2. Николаева И.В., Палесский С.В., Козьменко О.А., Аношин Г.Н. Определение редкоземельных и высокозарядных элементов в стандартных геологических образцах методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) // Геохимия. 2008. № 10. C. 1085-1091.
- 3. Николаева И.В., Палесский С.В., Чирко О.С., Черноножкин С.М. Определение основных и примесных элементов в силикатных породах методом масс-спектрометрии с индуктивно-связанной плазмой после сплавления с LiBO2 // Аналитика и контроль. 2012. Т. 16. № 2. С. 134-142.
- 4. Шарпенок Л.Н., Костин А.Е., Кухаренко Е.А. TAS-диаграмма сумма щелочей - кремнезем для химической классификации и диагностики плутонических пород // Региональная геология и металлогения. № 56. 2013. С. 40-50.
- 5. Anh T.T., Hoa T.T., Dung P.T., Can P.N., Gas'kov I.V., Nevol'ko P.A. Complex deposits in the Lo Gam structure, northeastern Vietnam: Mineralogy, geochemistry, and formation conditions // Russ. Geol. Geophys. 2012. V. 53. № 7. P. 623-635. https://doi.org/10.1016/j.rgg.2012.05.001
- 6. Ballard J.R., Palin M.J., Campbell I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile // Contrib. Mineral. Petrol. 2002. 144. P. 347-364. https://doi.org/10.1007/s00410-002-0402-5
- 7. Barbero L. Granulite-facies metamorphism in the Anatectic Complex of Toledo, Spain: Late Hercynian tectonic evolution by crustal extension // J. Geol. Soc. 1995. 152. P. 365-382. https://doi.org/10.1144/gsjgs.152.2.0365
- 8. Belousova E., Griffin W.L., O'reilly S.Y., Fisher N. Igneous zircon: trace element composition as an indicator of source rock type // Contrib. Miner. Petrol. 2002. 143. P. 602-622. https://doi.org/10.1007/s00410-002-0364-7
- 9. Blevin P.L., Chappell B.W. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia // Trans. R. Soc. Edinb. Earth Sci., 1992, 83, P. 305-316. https://doi.org/10.1017/S0263593300007987
- 10. Blevin P.L., Chappell B.W., Allen C.M. Intrusive metallogenic provinces in eastern Australia based on granite source and composition // Trans. R. Soc. Edinb. Earth Sci., 1996, 87, P. 281-290. https://doi.org/10.1017/S0263593300006684
- 11. Burnham A.D., Berry A.J. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts // Chem. Geol. 2014 366 P. 52-60. https://doi.org/10.1016/j.chemgeo.2013.12.015
- 12. Chang Z., Shu Q., Meinert L.D. Skarn deposits of China // Soc. Econ. Geol., Sp. Publ. 2019. 22. P. 189-234. https://doi.org/10.5382/SP.22.06
- 13. Chen H., Chen X., Zheng Y., Jiang X., Yang Y., Gao S. Key factors controlling Neoproterozoic tin metallogenic events in southwestern China: Multidisciplinary approach using geology, geochemistry, and geochronology // Precambrian Res. 2024. 409. 107449. https://doi.org/10.1016/j.precamres.2024.107449
- 14. Chen X., Zhou Z., Zhao J., Gao X. Chronology and geochemical composition of cassiterite and zircon from the Maodeng Sn-Cu deposit, Northeastern China: Implications for magmatic-hydrothermal evolution and ore-forming process // Ore Geol. Rev. 2022. 150. 105159. https://doi.org/10.1016/j.oregeorev.2022.105159
- 15. Chen Z., Lin W., Faure M., Lepvrier C., Vuong N.V., Tich V.V. Geochronology and isotope analysis of the Late Paleozoic to Mesozoic granitoids from northeastern Vietnam and implications for the evolution of the South China block // J. As. Earth Sci. 2014. 86. P. 131-150. https://doi.org/10.1016/j.jseaes.2013.07.039
- 16. Cheng Y., Mao J., Rusk B., Yang Z. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China // Ore Geol. Rev. 2012. 48. P. 180-196. https://doi.org/10.1016/j.oregeorev.2012.03.004
- 17. Cheng Y.B., Mao J.W., Spandler C. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China // Lithos. 2013. 175-176. P. 213-229. https://doi.org/10.1016/j.lithos.2013.04.002
- 18. Clark C., Fitzsimmons I.C.W., Healy D. How does the continental crust get really hot? // Elements. 2011. 7. P. 235-240. https://doi.org/10.2113/gselements.7.4.235
- 19. Coetzee J., Twist D. Disseminated tin mineralization in the Roof of the Bushveld granite pluton at the Zaaiplaats mine, with implications for the genesis of magmatic hydrothermal tin systems // Econ. Geol. 1989. 84. P. 1817-1834. https://doi.org/10.2113/gsecongeo.84.7.1817
- 20. DGMV. Geological map of Mong Cai (F-48-XXIV): 1 : 200,000 scale. Department of Geology and Mineral Resources of Vietnam, Hanoi. 1999a.
- 21. DGMV. Geological map of Hai Phong (F-48-XXIX): 1 : 200,000 scale. Department of Geology and Mineral Resources of Vietnam, Hanoi. 1999b.
- 22. DGMV. Geological map of Lang Son (F-48-XIII): 1 : 200,000 scale. Department of Geology and Mineral Resources of Vietnam, Hanoi. 2000.
- 23. DGMV. Geological map of Tuyen Quang (F-48-XXII): 1 : 200,000 scale. Department of Geology and Mineral Resources of Vietnam, Hanoi. 2001.
- 24. Duan X.X., Chen B., Sun K.K., Wang Z.Q., Yan X., Zhang Z. Accessory mineral chemistry as a monitor of petrogenetic and metallogenetic processes: a comparative study of zircon and apatite from Wushan Cuand Zhuxiling W (Mo)-mineralization-related granitoids // Ore Geol Rev. 2019. 111. 102940. https://doi.org/10.1016/j.oregeorev.2019.102940
- 25. Ferry J.M., Watson E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers // Contrib. Mineral. Petrol. 2007. 154 (4). P. 429-437. https://doi.org/10.1007/s00410-007-0201-0
- 26. Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W. Ti-in-zircon thermometry: applications and limitations // Contrib. Mineral. Petrol. 2008. 156 (2). P. 197-215. https://doi.org/10.1007/s00410-008-0281-5
- 27. Gardiner N.J., Hawkesworth C.J., Robb L.J., Whitehouse M.J., Roberts N.M.W., Kirkland C.L., Evans N.J. Contrasting granite metallogeny through the zircon record: A case study from Myanmar // Sci. Rep. 2017. 7. 748. https://doi.org/10.1038/s41598-017-00832-2
- 28. Gas’kov I.V., Tran T.A., Tran T.H., Pham T.D., Nevolko P.A., Pham N.C. The Sin Quyen Cu-Fe-Au-REE deposit (northern Vietnam): composition and formation conditions // Russ. Geol. Geophys. 2012. 53 (5). P.442-456. https://doi.org/10.1016/j.rgg.2012.03.005
- 29. Glotov A.I., Polyakov G.V., Trang T.H., Balykin P.A., Akimtsev V.A., Krivenko A.P., Tolstykh N.D., Ngo T.P., Hoang H.T., Tran Q.H., Petrova T.E. The Ban Phuc NiCu-PGE deposit related to the Phanerozoic komatiitebasalt association in the Song Da rift, northwestern Vietnam // Can. Miner. 2001. 39. P.573-589. https://doi.org/10.2113/gscanmin.39.2.573
- 30. Harlaux M., Kouzmanov K., Gialli S., Clark A.H., Laurent O., Corthay G., Flores E.P., Dini A., Chauvet A., Ulianov A., Chiaradia M. The upper Oligocene San Rafael intrusive complex (Eastern Cordillera, southeast Peru), host of the largest-known high-grade tin deposit // Lithos. 2021. 400-401. 106409. https://doi.org/10.1016/j.lithos.2021.106409
- 31. Hart C.J.R. Reduced intrusion-related gold systems. In: Goodfellow, W.D. (Ed.), Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada. Mineral Deposits Division, Special Publication, 2007. 5. P. 95-112.
- 32. Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Rev. Mineral. Geochem. 2003. 52. P. 27-62. https://doi.org/10.2113/0530027
- 33. Hou Z.Q., Pan X.F., Li Q.Y., Yang Z.M., Song Y.C. The giant Dexing porphyry Cu-Mo-Au deposit in East China: product of melting of juvenile lower crust in an intracontinental setting // Miner. Deposita. 2013. 48. P. 1019-1045. https://doi.org/10.1007/s00126-013-0472-5
- 34. Huang W.T., Liang H.Y., Zhang J., Wu J., Chen X.L., Ren L. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a cretaceous Sn-Cu ore belt from Southwest China to western Myanmar // Ore Geol. Rev. 2019. 112. 103030. https://doi.org/10.1016/j.oregeorev.2019.103030
- 35. Ishihara S. The magnetite-series and ilmenite-series granitic rocks // Mining Geol. 1977. 27. P. 293-305. https://doi.org/10.11456/shigenchishitsu1951.27.293
- 36. Ishihara S. The granitoid series and mineralization // Econ. Geol. 1981. 75. P. 458-484. https://doi.org/10.5382/AV75.14
- 37. Ishihara S., Orihashi Y. Zircon U-Pb age of the Triassic granitoids at Nui Phao, northern Viet Nam // Bull. Geol. Surv. Japan. 2014. 65. P. 17-22.
- 38. Jugo P.J. Sulfur content at sul de saturation in oxidized magmas // Geology. 2009. 37. P. 415-418. https://doi.org/10.1130/G25527A.1
- 39. Jugo P.J., Wilke M., Botcharnikov R.E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity // Geochim. Cosmochim. Acta. 2010. 74. P. 5926-5938. https://doi.org/10.1016/j.gca.2010.07.022
- 40. Khoi N.N. Mineral resources potential of Vietnam and current state of mining activity // App. Env. Res. 2014. 36 (1). P. 37-47.
- 41. Kiem D.D., Luyen P.V. Geology of tin deposits in Vietnam. Hanoi, 1991. 117 p.
- 42. Lang J.R., Baker T., Hart C.J.R., Mortensen J.K. An exploration model for intrusion related gold systems // Econ. Geol. Newsletter. 2000. 40. P. 1-15. https://doi.org/10.5382/SEGnews.2000-40.fea
- 43. Lehmann B. Metallogeny of Tin. Springer, Berlin, 1990. 211 p. https://doi.org/10.1007/BFb0010922
- 44. Lehmann B. Formation of tin ore deposits: A reassessment // Lithos, 2021. 402.105756. https://doi.org/10.1016/j.lithos.2020.105756
- 45. Lehmann B., Mahawat C. Metallogeny of tin in central Thailand: a genetic concept // Geology. 1989. 17. P. 426-429. https://doi.org/10.1130/0091-7613 (1989)0172.3.CO;2
- 46. Lehmann B., Harmanto. Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia // Econ. Geol. 1990. 85. P. 99-111. https://doi.org/10.2113/gsecongeo.85.1.99
- 47. Lehmann B., Ishihara S., Michel H., Miller J., Rapela C.W., Sanchez A., Tistl M., Winkelmann L. The Bolivian tin province and regional tin distribution in the Central Andes; a reassessment // Econ. Geol. 1990. 85. P. 1044-1058. https://doi.org/10.2113/gsecongeo.85.5.1044
- 48. Lepvrier C., Faure M., Voung N.V., Tich V.V., Lin, W., Thang, T.T., Phuong, T.H. North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo) // J. As. Earth Sci. 2011. 41. P. 56-68. https://doi.org/10.1016/j.jseaes.2011.01.002
- 49. Leloup H., Lacassin R., Tapponnier P., Scha¨ rer U., Zhong D., Liu X., Zhang L., Ji S., Trinh P. The Ailaoshan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina // Tectonophys. 1995. 252. P. 3-84. https://doi.org/10.1016/0040-1951 (95)00070-4
- 50. Liang H.Y., Campbell I.H., Allen C., Sun W.D., Liu C.Q., Yu H.X., Xie Y.W., Zhang Y.Q. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet // Miner. Deposita. 2006. 41. P. 152-159. https://doi.org/10.1007/s00126-005-0047-1
- 51. Linnen R.L., Pichavant M., Holtz F., Burgess S. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 ◦C and 2 kbar // Geochim. Cosmochim. Acta. 1995. 59 (8). P. 1579-1588. https://doi.org/10.1016/0016-7037 (95)00064-7
- 52. Linnen R.L., Pichavant M., Holtz F. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts // Geochim Cosmochim Acta. 1996. 60. P. 4965-4976. https://doi.org/10.1016/S0016-7037 (96)00295-5
- 53. Long P.D. ed. Geology and mineral resources map and text of Vietnam: Tuyen Quang sheet. Scale 1 : 200.000. Dept. Geol. Miner. Res.. Hanoi, 2001. P. 47-88.
- 54. Loucks R.R., Fiorentini M.L., Henríquez G. New magmatic oxybarometer using trace elements in zircon // J. Petrol. 2020. 61. P. 1-30. https://doi.org/10.1093/petrology/egaa034
- 55. Lu Y.J., Loucks R.R., Fiorentini M., McCuaig T.C., Evans N.J., Yang Z.M., Hou Z.Q., Kirkland C.L., ParraAvila L.A., Kobussen A. Zircon compositions as a path nder for porphyry Cu ± Mo ± Au deposits // Soc. Econ. Geol. Spec. Publ. 2016. 19. P. 329-347. https://doi.org/10.5382/SP.19.13
- 56. Maluski H., Lepvrier C., Jolivet L., Carter A., Roques D., Beyssac O., Nguyen D.T., Ta T.T., Avigad D. Ar-Ar and ssion track ages in the Song Chay massif: early Triassic and Cenozoic tectonics in northern Vietnam // J. Asian Earth Sci. 2001. 19. P. 233-248. https://doi.org/10.1016/S1367-9120 (00)00038-9
- 57. Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geol. Soc. Am. Bull. 1989. 101. P. 635 - 643. https://doi.org/10.1130/0016-7606 (1989)1012.3.CO;2
- 58. Mao J.W., Ouyang H.G., Song S.W., Santosh M., Yuan S.D., Zhou Z.H., Zheng W., Liu H., Liu P., Cheng Y.B., Chen M.H. Geology and metallogeny of tungsten and tin deposits in China // Econ. Geol. Spec. Publ. 2019. 22. P. 411-482. https://doi.org/10.5382/SP.22.10
- 59. Meinert L.D. Compositional variation of igneous rocks associated with skarn deposits - chemical evidence for a genetic connection between petrogenesis and mineralization: in Thompson J.F.H., ed., Magmas, uids, and ore deposits, Min. Assoc. Can. Short Course Serie. 1995. 23. P. 401-418.
- 60. Mungall J.E., Brenan J.M., Godel B., Barnes S.J., Gaillard F. Transport of metals and sulphur in magmas by otation of sulphide melt on vapour bubbles // Nat. Geosci. 2015. 8. P. 216-219. https://doi.org/10.1038/ngeo2373
- 61. Nguyen T.H., Nevolko P.A., Pham T.D., Svetlitskaya T.V., Tran T.H., Shelepaev R.A., Fominykh P.A., Pham N.C. Age and genesis of the W-Bi-Cu-F (Au) Nui Phao deposit, Northeast Vietnam: Constrains from U-Pb and ArAr geochronology, fluid inclusions study, S-O isotope systematic and scheelite geochemistry // Ore Geol. Rev. 2020. 123. 103578. https://doi.org/10.1016/j.oregeorev.2020.103578
- 62. Nevolko P.A., Tran T.H., Redin Y.O., Tran T.A., Ngo T.P., Vu H.L., Dultsev V.F., Pham T.D., Ngo T.H. Geology, mineralogy, geochemistry and δ34S of sedimentary rockhosted Au deposits in Song Hien structure, NE Vietnam // Ore Geol. Rev. 2017a. 84. P 273-288. https://doi.org/10.1016/j.oregeorev.2016.12.032
- 63. Nevolko P.A., Tran T.H., Yudin D.S., Ngo T.P. Ar-Ar ages of gold deposits in the Song Hien domain (NE Vietnam): Tectonic settings and comparison with Golden Triangle in China in terms of a single metallogenic province // Ore Geol. Rev.. 2017b. 89. P. 544-556. https://doi.org/10.1016/j.oregeorev.2017.07.004
- 64. Nevolko P.A., Pham Thi Dung, Tran Trong Hoa, Tran Tuan Anh, Ngo Thi Phuong, Fominykh P.A. Intrusionrelated Lang Vai gold-antimony district (Northeastern Vietnam): Geology, mineralogy, geochemistry and 40Ar/39Ar age // Ore Geol. Rev. 2018. 96. P. 218-235. https://doi.org/10.1016/j.oregeorev.2018.04.017
- 65. Nevolko P.A., Pham Thi Dung, Fominykh P.A., Tran Trong Hoa, Tran Tuan Anh, Ngo Thi Phuong. Origin of the intrusion-related Lang Vai gold-antimony district (Northeastern Vietnam): Constraints from uid inclusions study and C-O-S-Pb isotope systematics // Ore Geol. Rev. 2019. 104. P. 114-131. https://doi.org/10.1016/j.oregeorev.2018.10.019
- 66. Nevolko P.A., Svetlitskaya T.V., Savichev A.A., Vesnin V.S., Fominykh P.A. Uranium-Pb zircon ages, whole-rock and zircon mineral geochemistry as indicators for magmatic fertility and porphyry Cu-Mo-Au mineralization at the Bystrinsky and Shakhtama deposits, Eastern Transbaikalia, Russia // Ore Geol. Rev. 2021. 139 B. 104532. https://doi.org/10.1016/j.oregeorev.2021.104532
- 67. Nevolko P.A., Svetlitskaya T.V., Nguyen T.H., Pham T.D., Fominykh P.A., Tran T.H., Tran T.A., Shelepaev R.A. Genesis of the Thien Ke tungsten deposit, Northeast Vietnam: Evidence from mineral composition, uid inclusions, S-O isotope // Ore Geol. Rev. 2022. 143. 104791. https://doi.org/10.1016/j.oregeorev.2022.104791
- 68. Nevolko P.A., Tran T.A., Svetlitskaya T.V., Tran T.H., Ngo T.P., Ngo T.H. Suoi Cun Au ore occurrence as an example of potential Carlin-type sulphide-gold mineralization in Northeast Vietnam // Geosphernye issledovaniya. 2024. № 1. С. 6-25. https://doi.org/10.17223/25421379/30/1
- 69. Ni Z., Arevalo R., Piccoli P., Reno B.L. A novel approach to identifying mantle-equilibrated zircon by using trace element chemistry // Geochem. Geophys. Geosyst. 2020. 21. e2020GC009230. https://doi.org/10.1029/2020GC009230
- 70. Niu X., Shu Q., Xing K., Yuan S., Wei L., Zhang Y., Yu F., Zeng Q., Ma S. Evaluating Sn mineralization potential at the Haobugao skarn Zn-Pb deposit (NE China) using whole-rock and zircon geochemistry // J. Geochem. Exp. 2022. 234. 106938. https://doi.org/10.1016/j.gexplo.2021.106938
- 71. Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits // Econ. Geol. 1972. 67. P. 551-579. https://doi.org/10.2113/gsecongeo.67.5.551
- 72. Ohmoto H., Rye R.O. Isotopes of sulfur and carbon. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 2rd ed. Wiley and Sons, New York, 1979. P. 509-567.
- 73. Patten C., Barnes S.J., Mathez E.A., Jenner F.E. Partition coefficients of chalcophile elements between sul de and silicate melts and the early crystallization history of sul de liquid: LA-ICP-MS analysis of MORB sul de droplets // Chem. Geol. 2013. 358. P. 170-188. https://doi.org/10.1016/j.chemgeo.2013.08.040
- 74. Polyakov G.V., Shelepaev R.A., Izokh A.E., Balykin P.A., Hoa T.T., Phuong N.T., Hung T.Q., Nien B.A. The Nui Chua layered peridotite-gabbro complex as manifestation of Permo-Triassic mantle plume in northern Vietnam // Russ. Geol. Geophys. 2009. 50 (6). P. 501-516. https://doi.org/10.1016/j.rgg.2008.10.002
- 75. Qiu J.T., Yu X.Q., Santosh M., Zhang D.H., Chen S.Q., Li P.J. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China // Miner. Deposita. 2013. 48. P. 545-556. https://doi.org/10.1007/s00126-013-0456-5
- 76. Richards J. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water // Econ. Geol. 2011. 106 (7). P. 1075-1081. https://doi.org/10.2113/econgeo.106.7.1075
- 77. Richards J.P. Porphyry and related deposits in subduction and post-subduction settings // Acta Geol. Sin. Engl. Ed. 2014. 88 (s2). P. 535-537. https://doi.org/10.1111/1755-6724.12374_19
- 78. Richards J.P., Dang T., Dudka S.F., Wong M.L. The Nui Phao tungsten-fluorite-copper-gold-bismuth deposit, Northern Vietnam: an opportunity for sustainable development // Exp. Min. Geol. 2003. 12. P. 61-70. https://doi.org/10.2113/0120061
- 79. Roger F., Leloup P.H., Jolivet M., Lacassin R., Tranh P.T., Brunel M., Seward D. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology // Tectonophys. 2000. 321. P. 449-466. https://doi.org/10.1016/S0040-1951 (00)00085-8
- 80. Roger F., Maluski H., Lepvrier C., Vu V.T., Paquette J.L. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern VietnamGeodynamical implication // J. Asian Earth Sci. 2012. 48. P. 72-82. https://doi.org/10.1016/j.jseaes.2011.12.012
- 81. Romer R.L., Kroner U. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting // Gondwana Res. 2016. 31. P. 60-95. https://doi.org/10.1016/j.gr.2015.11.002
- 82. Sato K. Sedimentary crust and metallogeny of granitoid affinity: Implications from the geotectonic histories of the Circum-Japan Sea region, Central Andes and Southeastern Australia // Resour. Geol. 2012. 62. P. 329-351. https://doi.org/10.1111/j.1751-3928.2012.00200.x
- 83. Shen P., Hattori K., Pan H., Jackson S., Seitmuratova E. Oxidation condition and metal fertility of granitic magmas: zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt // Econ. Geol. 2015. 110. P. 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
- 84. Shu Q., Chang Z., Lai Y., Hu X., Wu H., Zhang Y., Wang P., Zhai D., Zhang C. Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China // Mineral. Deposita. 2019. 54. P. 645-656. https://doi.org/10.1007/s00126-019-00867-7
- 85. Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. 105. P. 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
- 86. Sillitoe R.H., Creaser R.A., Kern R.R., Lenters M.H. Squaw peak, Arizona: paleoproterozoic precursor to the Laramide porphyry copper province // Econ. Geol. 2014. 109. P. 1171-1177. https://doi.org/10.2113/econgeo.109.5.1171
- 87. Sillitoe R.H., Lehmann B. Copper-rich tin deposits // Mineral. Deposita. 2022. 57. P. 1-11. https://doi.org/10.1007/s00126-021-01078-9
- 88. Simons B., Andersen J.C., Shail R.K., Jenner F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian batholith: Precursor processes to magmatic-hydrothermal mineralization // Lithos. 2017. 278. P. 491-512. https://doi.org/10.1016/j.lithos.2017.02.007
- 89. Sun K.K., Chen B., Deng J., Ma X.H. Source of copper in the giant Shimensi W-Cu-Mo polymetallic deposit, South China: constraints from chalcopyrite geochemistry and oxygen fugacity of ore-related granites // Ore Geol. Rev. 2018. 101. P. 919-935. https://doi.org/10.1016/j.oregeorev.2018.08.029
- 90. Sun K.K., Jun Deng J., Wang Q.F., Chen B., Xu R., Ma Z.F. Formation of Sn-rich granitic magma: a case study of the highly evolved Kafang granite in the Gejiu tin polymetallic ore district, South China // Mineral. Deposita. 2023. 58. P. 359-378. https://doi.org/10.1007/s00126-022-01130-2
- 91. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc., London, Sp. Publ., 1989. 42. P. 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.1
- 92. Sun W.D., Liang H.Y., Ling M.X., Zhan M.Z., Ding X., Zhang H., Yang X.Y., Li Y.L., Ireland T.R., Wei Q.R., Fan W.M. The link between reduced porphyry copper deposits and oxidized magmas // Geochim. Cosmochim. Acta. 2013. 103. P. 263-275. https://doi.org/10.1016/j.gca.2012.10.054
- 93. Sun W., Huang R.F., Li H., Hu Y.B., Zhang C.C., Sun S.J., Zhang L.P., Ding X., Li C.Y., Zartman, R.E., Ling, M.X. Porphyry deposits and oxidized magmas // Ore Geol. Rev. 2015. 65. P. 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
- 94. Svetlitskaya T.V., Tolstykh N.D., Izokh A.E., Ngo T.P. PGE geochemical constraints on the origin of the Ni-Cu-PGE sul de mineralization in the Suoi Cun intrusion, Cao Bang province, Northeastern Vietnam // Mineral. Petrol. 2015. 109 (2). P. 161-180. https://doi.org/10.1007/s00710-014-0361-3
- 95. Svetlitskaya T.V., Nevolko P.A., Ngo T.P., Tran T.H., Izokh A.E., Shelepaev R.A., Bui A.N., Vu H.L. Smallintrusion-hosted Ni-Cu-PGE sulfide deposits in northeastern Vietnam: Perspectives for regional mineral potential // Ore Geol. Rev. 2017. 86. P. 615-623. https://doi.org/10.1016/j.oregeorev.2017.03.024
- 96. Svetlitskaya T.V., Nevolko P.A. U-Pb Ages and whole-rock and zircon geochemistry of granitoids from the Zhireken Mo-porphyry deposit, Eastern Transbaikalia: New insights into the link to mineralization // Geol. Ore Deposits. 2024. 66. P. 67-100. https://doi.org/10.1134/S1075701524010069
- 97. Thompson J.F.H., Newberry R.J. Gold deposits related to reduced granitic intrusions // Rev. Econ. Geol. 2000. 13. P. 377-400. https://doi.org/10.5382/Rev.13.11
- 98. Thompson J.F.H., Sillitoe R.H., Baker T., Lang J.R., Mortensen J.K. Intrusion related gold deposits associated with tungsten-tin provinces // Miner. Deposita. 1999. 34. P. 323-334. https://doi.org/10.1007/s001260050207
- 99. Trail D., Watson E.B., Tailby N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas // Geochim. Cosmochim. Acta. 2012. 97. P. 70-87. https://doi.org/10.1016/j.gca.2012.08.032
- 100. Tran T.H., Izokh A.E., Polyakov G.V., Borisenko A.S., Tran T.A., Balykin P.A., Ngo T.P., Rudnev S.N., Van V.V., Nien B.A. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume // Russ. Geol. Geophys. 2008. 49. P. 480-491. https://doi.org/10.1016/j.rgg.2008.06.005
- 101. Tran T.H., Nevolko P.A., Ngo T.P., Svetlitskaya T.V., Vu H.L., Redin Y., Tran T.A., Pham T.D., Ngo T.H. Geology, geochemistry and sulphur isotopes of the Hat Han gold-antimony deposit, NE Vietnam // Ore Geol. Rev. 2016a. 78. P. 69-84. https://doi.org/10.1016/j.oregeorev.2016.03.021
- 102. Tran T.H., Polyakov G.V., Tran T.A., Borisenko A.S., Izokh A.E., Balykin P.A., Ngo T.P., Pham, T.D. Intraplate Magmatism and Metallogeny of North Vietnam. Modern Approaches in Solid Earth Sciences, Springer International Publishing house, Switzerland, 2016b. 372 p. https://doi.org/10.1007/978-3-319-25235-3
- 103. Tran V.T., Truong Cam Bao. Geology of Vietnam (North Part). General Department of Geology, Research Institute of Geology and Mineral Resources. Hanoi, 1977.
- 104. Tri T.V., Khuc V. (Eds.). Geology and Earth Resources of Vietnam. General Dept. of Geology, and Minerals of Vietnam, Hanoi, Publishing House for Science and Technology, 2011. 645 p.
- 105. Vermeesch P. IsoplotR: a free and open toolbox for geochronology // Geosci. Front. 2018. 9 (5). P. 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
- 106. Viruete J.E., Indares A., Arenas R. P-T paths derived from garnet growth zoning in an extensional setting: An example from the Tormes gneiss dome (Iberian massif, Spain) // J. Petrol. 2000. 41. P. 1489-1515. https://doi.org/10.1093/petrology/41.10.1489
- 107. Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. 151. P. 413-433. https://doi.org/10.1007/s00410-006-0068-5
- 108. Wolf M., Romer R.L., Franz L., López-Moro F.J. Tin in granitic melts: The role of melting temperature and protolith composition // Lithos. 2018. 310-311. P. 20-30. https://doi.org/10.1016/j.lithos.2018.04.004
- 109. Xing K., Shu Q., Lentz D.R., Wang F. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing'an Range, NE China // Am. Mineral. 2020. 105. P. 382-396. https://doi.org/10.2138/am-2020-7226
- 110. Xing K., Shu Q., Lentz D.R. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry // J. Petrol. 2021. 62. egab018. https://doi.org/10.1093/petrology/egab018
- 111. Xu R., Romer R.L., Kroner U., Deng J. Tectonic control on the spatial distribution of Sn mineralization in the Gejiu Sn district, China // Ore Geol. Rev. 2022. 148. 105004. https://doi.org/10.1016/j.oregeorev.2022.105004
- 112. Yuan S., Williams-Jones A.E., Romer R.L., Zhao P., Mao J. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: insights from the Nanling region, China // Econ. Geol. 2019. 114 (5). P. 1005-1012. https://doi.org/10.5382/econgeo.4669
- 113. Zhang H., Li C.Y., Yang X.Y., Sun Y.L., Deng J.H., Liang H.Y., Wang R.L., Wang B.H., Wang Y.X., Sun W.D. Shapinggou: the largest Climax-type porphyry Mo deposit in China // Int. Geol. Rev. 2014. 56. P. 313-331. https://doi.org/10.1080/00206814.2013.855363
- 114. Zhang L.P., Zhang R.Q., Hu Y.B., Liang J.L., Ouyang Z.X., He J.J., Chen Y.X., Guo J., Sun W.D. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: geochronological and geochemical perspectives // Lithos. 2017. 290-291. P. 253-268. https://doi.org/10.1016/j.lithos.2017.08.013
- 115. Zhang J., Wang C., Lv P., Qin X., Huang W., Yan X., Shi W. Petrogenesis and oxidation state of biotite granite, and cassiterite U-Pb age from the Debao Cu-Sn skarn deposit, southwestern China: Implications for coupled Cu-Sn mineralization // Ore Geol. Rev. 2024a. 167. 105971. https://doi.org/10.1016/j.oregeorev.2024.105971
- 116. Zhang T.Y., Xia Q.X., Yang X., Zhao Z., Sun J., Zha X.P., Lu Y. The petrogenesis and metallogenesis of the ore-forming granites in the Tongmukeng Sn deposit, Jiangnan Orogenic Belt, South China // Ore Geol. Rev. 2024b. 168. 106016. https://doi.org/10.1016/j.oregeorev.2024.106016
- 117. Zhao H., Feng C., Zhong S, Qu H., Wu Q. Zircon fertility indicators compromised by mineral inclusion contamination: A case study from the Taoxikeng W deposit, South China // Ore Geol. Rev. 2023. 162. 105714. https://doi.org/10.1016/j.oregeorev.2023.105714
- 118. Zhao P., Chu X., Williams-Jones A.E., Mao J., Yuan S. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces // Geol. 2022. 50 (1). P. 121-125. https://doi.org/10.1130/G49248.1
- 119. Zhao Y., Chen S., Tian H., Zhao J., Tong X., Chen X. Trace element and S isotope characterization of sul des from skarn Cu ore in the Laochang Sn-Cu deposit, Gejiu district, Yunnan, China: implications for the ore-forming process // Ore Geol. Rev. 2021., 134. 104155. https://doi.org/10.1016/j.oregeorev.2021.104155
- 120. Zhong S.H., Feng C.Y., Seltmann R., Li D., Qu H.Y. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition // Lithos. 2018. 314-315. P. 646-657. https://doi.org/10.1016/j.lithos.2018.06.029
- 121. Zhong S., Seltmann R., Qu H., Song Y. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method // Miner. Petrol. 113. P. 755-763. https://doi.org/10.1007/s00710-019-00682-y
- 122. Zhu J.J., Hu R., Richards J.P., Bi X., Zhong H. Genesis and magmatic-hydrothermal evolution of the Yangla skarn Cu deposit, Southwest China // Econ. Geol. 2015. 110. P. 631-652. https://doi.org/10.2113/econgeo.110.3.631
- 123. Zou X., Qin K., Han X., Li G., Evans N.J., Li Z., Yang W. Insight into zircon REE oxy-barometers: a lattice strain model perspective // Earth Planet. Sci. Lett. 2019. 506. P. 87-96. https://doi.org/10.1016/j.epsl.2018.10.031